LUMINA Technical Due Diligence
Comprehensive documentation of statistical methods, architectural decisions, and evaluation metrics for AI music attribution.
LUMINA Architecture
End-to-end pipeline from audio generation to rightsholder attribution, leveraging gradient-based signatureing and dual-channel analysis.
Channel P & Channel M
Attribution is computed through two complementary signal pathways, each capturing different aspects of musical influence.
Channel P (Composition)
Source: Self-Attention layers (self_attn).
Captures: Melodic patterns, harmonic progressions, and structure.
Technical: Cross-entropy teacher forcing, 10s chunked processing.
Channel M (Production)
Source: Output Linear projections (lm.linears).
Captures: Timbre, texture, and sound design.
Technical: 3 intelligent segments per song via librosa.
Significance Thresholds
Thresholds are derived from the expected cosine similarity distribution of random 512-dimensional unit vectors.
| Threshold | Sigma Level | Confidence | Meaning |
|---|---|---|---|
| < 4.4% | < 1σ | < 68% | Indistinguishable from noise |
| ≥ 4.4% | ≥ 1σ | ≥ 68% | Qualified Influence |
| ≥ 8.8% | ≥ 2σ | ≥ 95% | High Confidence |
| ≥ 13.2% | ≥ 3σ | ≥ 99.7% | Definitive Proof |
LUMINA Influence Potency (LIP)
LIP measures influence using Standardized TracIn Score (STS) with tanh normalization for meaningful percentage-based attribution.
STS (Z-Score)
STS = (score - μ) / σ
Z-score normalized cosine similarity.
LIP (Tanh Saturation)
LIP = tanh(k × STS)
LIP% = (LIP + 1) / 2 × 100
Maps to 0-100% with 50% baseline.
Why The σ Rules Apply
In 512D space, random unit vectors are nearly orthogonal. Their dot products follow a tight Gaussian distribution around 0 with σ ≈ 4.4%. This makes outlier detection robust.
Attribution Share System
Songs with score ≥ 1σ (4.4%) qualify. Shares are proportional to their LIP contribution. Share_i = LIP_i / Σ(LIP).
System Performance
On NVIDIA H100 SXM5 (80GB).
Validation Measures
Rigorous safeguards implemented to ensure attribution accuracy, prevent false positives, and handle edge cases.
Low-Energy Filter
Problem: Silent or low-volume segments (e.g., a capella breaks) can produce
random high-variance gradients.
Solution: Audio segments with RMS energy below -50dB are strictly excluded
from attribution.
Causal Verification
Method: "Ablation Testing". We remove the top attributed song from training
and regenerate.
Pass Condition: Output similarity to the removed song must drop by at least
2σ.
Reproducibility
Guarantee: 100% Deterministic.
Fixed seed 422024 for JL projection ensures that the same audio always produces
the exact same signature, essential for legal audits.
Positive-Only Policy
Rule: Negative cosine similarity is ignored.
Rationale: "Anti-influence" (doing the opposite of a song) does not
constitute copyright infringement or influence.